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1.1 Motivation

In inference, we are interested in the posterior distribution p(y | x), where y is an unobserved (latent) variable
that is related to an observation x (e.g., y generates x, y is a translation of x). According to the rule of
conditional probability, we have:

p(y | x) =
p(x, y)

p(x)

The marginal distribution p(x) (called the evidence), however, is calculated by summing (or integrating,
for continuous distributions) p(x, y) over all values of y, which is intractable in many cases. We’ll try to
approximate p(y | x) with a simpler proposal distribution, q(y).

1.2 Derivation

We want our proposal distribution, q(y), to closely model p(y | x), which means minimizing their KL
divergence.

KL[q(y) || p(y | x)] = −
∫
y

q(y) log p(y | x) +

∫
y

q(y) log q(y)

= −
∫
y

q(y) log
p(x, y)

p(x)
+

∫
y

q(y) log q(y)

= −
∫
y

q(y)(log p(x, y)− log p(x)) +

∫
y

q(y) log q(y)

= −
∫
y

q(y) log p(x, y) +

∫
y

q(y) log p(x) +

∫
y

q(y) log q(y)

= −(

∫
y

q(y) log p(x, y)−
∫
y

q(y) log q(y)) +

∫
y

q(y) log p(x)

= −(

∫
y

q(y) log p(x, y)−
∫
y

q(y) log q(y)) + log p(x)

∫
y

q(y)

= −(Eq[log p(x, y)]− Eq[log q(y)]) + log p(x) · 1
= −L + log p(x)

where

L = Eq[log p(x, y)]− Eq[log q(y)]
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1.3 Discussion

We see that KL[q(y) || p(y | x)] is equal to some term −L dependent on the proposal distribution plus an
additive constant, namely log p(x). Because calculating p(x) is intractable, calculating the KL divergence
is intractable. However, note that log p(x) is independent of the proposal distribution, so optimization
with respect to q is not affected by it. We see that minimizing KL[q(y) || p(y | x)] is equivalent to
minimizing −L, which is the same as maximizing L.

Rearranging:

L = log p(x)−KL[q(y) || p(y | x)]

≤ log p(x)

where the inequality arises because KL[q(·) || p(·)] ≥ 0. Equality holds if and only if q(·) perfectly matches
p(·) (KL = 0).

We see then that L is a lower bound on p(x) (the evidence). We therefore say that L is the evidence lower
bound (ELBO). L can be calculated without knowing the value of the intractable normalizing constant p(x)
and is equal to it when L is maximized (when q(·) matches p(·)). That is, we get a tight bound on p(x) by
minimizing the KL divergence between q(y) and p(y | x), or equivalently, by maximizing L. The family of
proposal distributions q is chosen so that L is easily computable.
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